Parallel FDA5 for Fast Deployment of Accurate Statistical Machine Translation Systems

نویسندگان

  • Ergun Biçici
  • Qun Liu
  • Andy Way
چکیده

We use parallel FDA5, an efficiently parameterized and optimized implementation of feature decay algorithms for fast deployment of accurate statistical machine translation systems, taking only about half a day for each translation direction. We build Parallel FDA5 Moses SMT systems for all language pairs in the WMT14 translation task and obtain SMT performance close to the top Moses systems with an average of 3.49 BLEU points difference using significantly less resources for training and development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ParFDA for Fast Deployment of Accurate Statistical Machine Translation Systems, Benchmarks, and Statistics

We build parallel FDA5 (ParFDA) Moses statistical machine translation (SMT) systems for all language pairs in the workshop on statistical machine translation (Bojar et al., 2015) (WMT15) translation task and obtain results close to the top with an average of 3.176 BLEU points difference using significantly less resources for building SMT systems. ParFDA is a parallel implementation of feature d...

متن کامل

Feature Decay Algorithms for Fast Deployment of Accurate Statistical Machine Translation Systems

We use feature decay algorithms (FDA) for fast deployment of accurate statistical machine translation systems taking only about half a day for each translation direction. We develop parallel FDA for solving computational scalability problems caused by the abundance of training data for SMT models and LM models and still achieve SMT performance that is on par with using all of the training data ...

متن کامل

Referential Translation Machines for Predicting Translation Quality

We use referential translation machines (RTM) for quality estimation of translation outputs. RTMs are a computational model for identifying the translation acts between any two data sets with respect to interpretants selected in the same domain, which are effective when making monolingual and bilingual similarity judgments. RTMs achieve top performance in automatic, accurate, and language indep...

متن کامل

Fast and Accurate Preordering for SMT using Neural Networks

We propose the use of neural networks to model source-side preordering for faster and better statistical machine translation. The neural network trains a logistic regression model to predict whether two sibling nodes of the source-side parse tree should be swapped in order to obtain a more monotonic parallel corpus, based on samples extracted from the word-aligned parallel corpus. For multiple ...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014